\(\int \frac {A+B \sec (c+d x)}{(b \sec (c+d x))^{3/2}} \, dx\) [5]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 116 \[ \int \frac {A+B \sec (c+d x)}{(b \sec (c+d x))^{3/2}} \, dx=\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 A \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 b^2 d}+\frac {2 A \sin (c+d x)}{3 b d \sqrt {b \sec (c+d x)}} \]

[Out]

2/3*A*sin(d*x+c)/b/d/(b*sec(d*x+c))^(1/2)+2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/
2*d*x+1/2*c),2^(1/2))/b/d/cos(d*x+c)^(1/2)/(b*sec(d*x+c))^(1/2)+2/3*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x
+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*(b*sec(d*x+c))^(1/2)/b^2/d

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3872, 3854, 3856, 2720, 2719} \[ \int \frac {A+B \sec (c+d x)}{(b \sec (c+d x))^{3/2}} \, dx=\frac {2 A \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 b^2 d}+\frac {2 A \sin (c+d x)}{3 b d \sqrt {b \sec (c+d x)}}+\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}} \]

[In]

Int[(A + B*Sec[c + d*x])/(b*Sec[c + d*x])^(3/2),x]

[Out]

(2*B*EllipticE[(c + d*x)/2, 2])/(b*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*A*Sqrt[Cos[c + d*x]]*Ellipt
icF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/(3*b^2*d) + (2*A*Sin[c + d*x])/(3*b*d*Sqrt[b*Sec[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rubi steps \begin{align*} \text {integral}& = A \int \frac {1}{(b \sec (c+d x))^{3/2}} \, dx+\frac {B \int \frac {1}{\sqrt {b \sec (c+d x)}} \, dx}{b} \\ & = \frac {2 A \sin (c+d x)}{3 b d \sqrt {b \sec (c+d x)}}+\frac {A \int \sqrt {b \sec (c+d x)} \, dx}{3 b^2}+\frac {B \int \sqrt {\cos (c+d x)} \, dx}{b \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}} \\ & = \frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 A \sin (c+d x)}{3 b d \sqrt {b \sec (c+d x)}}+\frac {\left (A \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 b^2} \\ & = \frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 A \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 b^2 d}+\frac {2 A \sin (c+d x)}{3 b d \sqrt {b \sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.40 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.74 \[ \int \frac {A+B \sec (c+d x)}{(b \sec (c+d x))^{3/2}} \, dx=\frac {\sec ^2(c+d x) \left (6 B \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+A \left (2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\sin (2 (c+d x))\right )\right )}{3 d (b \sec (c+d x))^{3/2}} \]

[In]

Integrate[(A + B*Sec[c + d*x])/(b*Sec[c + d*x])^(3/2),x]

[Out]

(Sec[c + d*x]^2*(6*B*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + A*(2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x
)/2, 2] + Sin[2*(c + d*x)])))/(3*d*(b*Sec[c + d*x])^(3/2))

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 12.00 (sec) , antiderivative size = 595, normalized size of antiderivative = 5.13

method result size
parts \(-\frac {2 A \left (i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )+i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sec \left (d x +c \right )-\sin \left (d x +c \right )\right )}{3 d \sqrt {b \sec \left (d x +c \right )}\, b}+\frac {2 B \left (i \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \sqrt {\left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1\right ) \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )-i \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \sqrt {\left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1\right ) \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )}\, \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{4} \csc \left (d x +c \right )^{4}-1}\, \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-\sqrt {\left (1-\cos \left (d x +c \right )\right )^{4} \csc \left (d x +c \right )^{4}-1}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right )}{b d \sqrt {\left (1-\cos \left (d x +c \right )\right )^{4} \csc \left (d x +c \right )^{4}-1}\, \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right ) \sqrt {-\frac {\left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1\right ) b}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}}\) \(595\)
default \(-\frac {2 \left (i A \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \cos \left (d x +c \right )+3 i B \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \cos \left (d x +c \right )-3 i B \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \cos \left (d x +c \right )+2 i A \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+6 i B \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-6 i B \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+i A \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sec \left (d x +c \right )+3 i B \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sec \left (d x +c \right )-3 i B \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sec \left (d x +c \right )-A \cos \left (d x +c \right ) \sin \left (d x +c \right )-A \sin \left (d x +c \right )-3 B \sin \left (d x +c \right )\right )}{3 b d \left (\cos \left (d x +c \right )+1\right ) \sqrt {b \sec \left (d x +c \right )}}\) \(603\)

[In]

int((A+B*sec(d*x+c))/(b*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/3*A/d/(b*sec(d*x+c))^(1/2)/b*(I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-co
t(d*x+c)+csc(d*x+c)),I)+I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-cot(d*x+c)+
csc(d*x+c)),I)*sec(d*x+c)-sin(d*x+c))+2*B/b/d*(I*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*(-(1-cos(d*x+c))^2*cs
c(d*x+c)^2+1)^(1/2)*(((1-cos(d*x+c))^2*csc(d*x+c)^2+1)*((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*EllipticF(I*(-
cot(d*x+c)+csc(d*x+c)),I)-I*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*(-(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*(
((1-cos(d*x+c))^2*csc(d*x+c)^2+1)*((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*EllipticE(I*(-cot(d*x+c)+csc(d*x+c)
),I)+((1-cos(d*x+c))^4*csc(d*x+c)^4-1)^(1/2)*(1-cos(d*x+c))^3*csc(d*x+c)^3-((1-cos(d*x+c))^4*csc(d*x+c)^4-1)^(
1/2)*(-cot(d*x+c)+csc(d*x+c)))/((1-cos(d*x+c))^4*csc(d*x+c)^4-1)^(1/2)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1)/(-((1
-cos(d*x+c))^2*csc(d*x+c)^2+1)*b/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.29 \[ \int \frac {A+B \sec (c+d x)}{(b \sec (c+d x))^{3/2}} \, dx=\frac {2 \, A \sqrt {\frac {b}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - i \, \sqrt {2} A \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} A \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} B \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} B \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{3 \, b^{2} d} \]

[In]

integrate((A+B*sec(d*x+c))/(b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/3*(2*A*sqrt(b/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) - I*sqrt(2)*A*sqrt(b)*weierstrassPInverse(-4, 0, cos(d
*x + c) + I*sin(d*x + c)) + I*sqrt(2)*A*sqrt(b)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*
I*sqrt(2)*B*sqrt(b)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*I*sq
rt(2)*B*sqrt(b)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(b^2*d)

Sympy [F]

\[ \int \frac {A+B \sec (c+d x)}{(b \sec (c+d x))^{3/2}} \, dx=\int \frac {A + B \sec {\left (c + d x \right )}}{\left (b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate((A+B*sec(d*x+c))/(b*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + B*sec(c + d*x))/(b*sec(c + d*x))**(3/2), x)

Maxima [F]

\[ \int \frac {A+B \sec (c+d x)}{(b \sec (c+d x))^{3/2}} \, dx=\int { \frac {B \sec \left (d x + c\right ) + A}{\left (b \sec \left (d x + c\right )\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c))/(b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)/(b*sec(d*x + c))^(3/2), x)

Giac [F]

\[ \int \frac {A+B \sec (c+d x)}{(b \sec (c+d x))^{3/2}} \, dx=\int { \frac {B \sec \left (d x + c\right ) + A}{\left (b \sec \left (d x + c\right )\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c))/(b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)/(b*sec(d*x + c))^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{(b \sec (c+d x))^{3/2}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{{\left (\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int((A + B/cos(c + d*x))/(b/cos(c + d*x))^(3/2),x)

[Out]

int((A + B/cos(c + d*x))/(b/cos(c + d*x))^(3/2), x)